1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
| import re import json import time
import dashscope
import agent_tools
class QWenReactAgent: system_prompt = """Answer the following questions as best you can. Please try to get response by yourself if possible, use the following tools if necessary: {tools}
You must use the following format: Question: the input question you must answer Thought: you should always think about what to do Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action, must contains the tool argument and its value in JSON format Observation: the result of the action (this Thought/Action/Action Input/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question, 'Final Answer:' must be output as a whole and cannot be disassembled """
react_prompt = """ Begin! Question: {input} Thought: """
prompt_template = """Answer the following questions as best you can. Please try to get response by yourself if possible, use the following tools if necessary: {tools}
You must use the following format: Question: the input question you must answer Thought: you should always think about what to do Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action, must contains the tool argument and its value in JSON format Observation: the result of the action (this Thought/Action/Action Input/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question
Begin! Question: {input} Thought: """
def __init__(self, model_config, tools): self.model_config = model_config self.tools = tools self.prompt = None self.messages = [] self.curr_round = 0 self.max_round = 5 self.run_continue = True self.final_answer = False self.show_process = True self.stream_interval = 0.05
def load_prompt(self, question): tool_names = ','.join(self.tools.keys()) self.prompt = self.prompt_template.format(tools=self.tools, tool_names=tool_names, input=question)
self.system_prompt = self.system_prompt.format(tools=self.tools, tool_names=tool_names) self.react_prompt = self.react_prompt.format(input=question)
self.messages.append({ "role": 'system', "content": self.system_prompt }) self.messages.append({ "role": 'user', "content": self.react_prompt })
def run_llm_prompt(self): while self.run_continue and self.curr_round < self.max_round: llm_response = dashscope.Generation.call( model=self.model_config.get("model"), prompt=self.prompt, result_format='message' )
if llm_response.get("status_code") == 200: llm_output = llm_response.get("output") choices = llm_output.get("choices")[0] content = choices.get("message").get("content") self.prompt += content print(">>>>>>>>>>") print(f"=====第{self.curr_round + 1}轮prompt: {self.prompt}")
if "Final Answer" in content: self.run_continue = False break
split_content = re.split('Action: |Action Input: ', content) if len(split_content) > 2: tool_name = split_content[1].replace('\n', '') tool_args = split_content[2].replace('\n', '')
if hasattr(agent_tools, tool_name): func = getattr(agent_tools, tool_name) result = func(**json.loads(tool_args)) self.prompt += f"Observation: {result}\n"
self.curr_round += 1 else: self.run_continue = False break
print(">>>>>>>>>>") print(f"=====Final Answer: {self.prompt}")
return self.prompt
def run_llm_messages(self): while self.run_continue and self.curr_round < self.max_round: llm_response = dashscope.Generation.call( model=self.model_config.get("model"), messages=self.messages, result_format='message' )
if llm_response.get("status_code") == 200: llm_output = llm_response.get("output") choices = llm_output.get("choices")[0] content = choices.get("message").get("content") self.react_prompt += content
print(">>>>>>>>>>") print(f"=====第{self.curr_round + 1}轮prompt: {self.react_prompt}")
if "Final Answer" in content: self.run_continue = False break
split_content = re.split('Action: |Action Input: ', content) if len(split_content) > 2: tool_name = split_content[1].replace('\n', '') tool_args = split_content[2].replace('\n', '')
if hasattr(agent_tools, tool_name): func = getattr(agent_tools, tool_name) result = func(**json.loads(tool_args)) self.react_prompt += f"Observation: {result}\n"
self.curr_round += 1
self.messages = [ {"role": "system", "content": self.system_prompt}, {"role": "user", "content": self.react_prompt} ] else: self.run_continue = False break
print(">>>>>>>>>>") print(f"=====Final Answer: {self.react_prompt}")
return self.messages
def run_llm_stream(self): """流式输出结果 """ final_answer_content = [] while self.run_continue and self.curr_round < self.max_round: llm_response = dashscope.Generation.call( model=self.model_config.get("model"), messages=self.messages, result_format='message', incremental_output=True, stream=True, )
current_resp_content = '' for response in llm_response:
if response.get("status_code") == 200: llm_output = response.get("output") choices = llm_output.get("choices")[0] content = choices.get("message").get("content")
if not self.show_process: if self.final_answer: yield content.lstrip() else: if 'Final Answer' in content: self.final_answer = True c = content.split("Final Answer:") if len(c) > 1 and c[1]: yield c[1] else: if self.final_answer: final_answer_content.append(content) else: if 'Final Answer' in content: self.final_answer = True c = content.split("Final Answer:") if len(c) > 1 and c[1]: final_answer_content.append("\n" + c[1])
current_resp_content += content if choices.get("finish_reason") == "stop": break
if current_resp_content: if "Final Answer" in current_resp_content: self.run_continue = False self.react_prompt += current_resp_content
if self.show_process: yield current_resp_content break
if self.show_process: if self.curr_round == 0: for msg in (self.react_prompt + current_resp_content).split('\n')[:-1]: time.sleep(self.stream_interval) yield msg else: for msg in current_resp_content.split('\n')[:-1]: time.sleep(self.stream_interval) yield msg
self.react_prompt += current_resp_content
split_content = re.split('Action: |Action Input: ', current_resp_content) if len(split_content) > 2: tool_name = split_content[1].replace('\n', '') tool_args = split_content[2].replace('\n', '')
if hasattr(agent_tools, tool_name): func = getattr(agent_tools, tool_name) result = func(**json.loads(tool_args)) self.react_prompt += f"Observation: {result}\n"
if self.show_process: yield f"Observation: {result}"
self.curr_round += 1 self.messages = [ {"role": "system", "content": self.system_prompt}, {"role": "user", "content": self.react_prompt} ]
if self.show_process: print(f"====================") for msg in final_answer_content: time.sleep(self.stream_interval) yield msg.lstrip()
async def run_llm_async_stream(self): pass
|